Stochastic-Based Spin-Programmable Gate Array with Emerging MTJ Device Technology
نویسندگان
چکیده
This paper describes the stochastic-based Spin-Programmable Gate Array (SPGA), an innovative architecture attempting to exploit the stochastic switching behavior newly found in emerging spintronic devices for reconfigurable computing. While many recently studies have investigated using Spin Transfer Torque Memory (STTM) devices to replace configuration memory in field programmable gate arrays (FPGAs), our study, for the first time, attempts to use the quantum-induced stochastic property exhibited by spintronic devices directly for reconfiguration and logic computation. Specifically, the SPGA was designed from scratch for high performance, routability, and ease-of-use. It supports variable-granularity multiple-input-multiple-output (MIMO) logic blocks and variable-length bypassing interconnects with a symmetrical structure. Due to its unconventional architectural features, the SPGA requires several major modifications to be made in the standard VPR placement/routing CAD flow, which include a new technology mapping algorithm based on computing (k, l)-cut, a new placement algorithm, and a modified delay-based routing procedure.Previous studies have shown that, simply replacing reconfiguration memory bits with spintronic devices, the conventional 2D island-style FPGA architecture can achieve approximately 5 times area savings, 2 times speedup and 1.6 times power savings. Our mixed-mode simulation results have shown that, with FPGA architecture innovations, on average, a SPGA can further achieve more than 10 times improvement in logic density, about 5 times improvement in average net delay, and about 5 times improvement in the critical-path delay for the largest 12 MCNC benchmark circuits over an island-style baseline FPGA with spintronic configuration bits.
منابع مشابه
Field Programmable Gate Array–based Implementation of an Improved Algorithm for Objects Distance Measurement (TECHNICAL NOTE)
In this work, the design of a low-cost, field programmable gate array (FPGA)-based digital hardware platform that implements image processing algorithms for real-time distance measurement is presented. Using embedded development kit (EDK) tools from Xilinx, the system is developed on a spartan3 / xc3s400, one of the common and low cost field programmable gate arrays from the Xilinx Spartan fami...
متن کاملDesign and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)
In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...
متن کاملImplementation of Face Recognition Algorithm on Fields Programmable Gate Array Card
The evolution of today's application technologies requires a certain level of robustness, reliability and ease of integration. We choose the Fields Programmable Gate Array (FPGA) hardware description language to implement the facial recognition algorithm based on "Eigen faces" using Principal Component Analysis. In this paper, we first present an overview of the PCA used for facial recognition,...
متن کاملField Programmable Gate Array Implementation of Active Control Laws for Multi-mode Vibration Damping
This paper investigate the possibility and effectiveness of multi-mode vibration control of a plate through real-time FPGA (Field Programmable Gate Array) implementation. This type of embedded system offers true parallel and high throughput computation abilities. The control object is an aluminum panel, clamped to a Perspex box’s upper side. Two types of control laws are studied. The first belo...
متن کاملA Robust and Efficient MTJ-based Spintronic IMP Gate for New Logic Circuits and Large-Scale Integration
A novel circuit topology of a spintronic stateful implication (IMP) logic gate based on a spin transfer torqueoperated magnetic tunnel junction (STT-MTJ) is proposed and analyzed. It is demonstrated that the proposed topology reduces the IMP error and also the energy consumption by about 60% as compared to the conventional one. Stateful IMP-based logic uses the nonvolatile memory unit (MTJ devi...
متن کامل